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The least-mean-fourth (LMF) algorithm is known for its fast convergence and lower

steady state error, especially in sub-Gaussian noise environments. Recent work on

normalised versions of the LMF algorithm has further enhanced its stability and

performance in both Gaussian and sub-Gaussian noise environments. For example, the

recently developed normalised LMF (XE-NLMF) algorithm is normalised by the mixed

signal and error powers, and weighted by a fixed mixed-power parameter. Unfortu-

nately, this algorithm depends on the selection of this mixing parameter. In this work, a

time-varying mixed-power parameter technique is introduced to overcome this

dependency. A convergence analysis, transient analysis, and steady-state behaviour of

the proposed algorithm are derived and verified through simulations. An enhancement

in performance is obtained through the use of this technique in two different scenarios.

Moreover, the tracking analysis of the proposed algorithm is carried out in the presence

of two sources of nonstationarities: (1) carrier frequency offset between transmitter and

receiver and (2) random variations in the environment. Close agreement between

analysis and simulation results is obtained. The results show that, unlike in the

stationary case, the steady-state excess mean-square error is not a monotonically

increasing function of the step size.

& 2007 Elsevier B.V. All rights reserved.
1. Introduction

The least-mean-fourth (LMF) algorithm [1] belongs to
the class of stochastic gradient descent algorithms, similar
to the least-mean-square (LMS) algorithm [2]. The power
of LMF lies in its faster initial convergence and lower
steady-state error relative to the LMS algorithm. More
importantly, its mean-fourth error cost function yields
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better performance than that of the LMS for noise
of sub-Gaussian nature [1], or noise with light-tailed
probability density function [3]. However, this higher-
order algorithm requires a much smaller step size to
ensure stable adaptation [4,5], since the error power 3 in
the LMF gradient vector can cause devastating initial
instability, resulting in unnecessary performance degra-
dation. The solution proposed here is to normalise the
step size in a similar manner as done for the algorithms
developed in [6,7]. Although the two normalisation
techniques of [6] and [7] are quite similar, the latter (i.e.,
the XE-NLMF, where XE refers to the use of both input X
and error E in the normalisation) offers more flexibility
and eventually more improvement in performance than
the former.
nd tracking analysis of a variable normalised LMF (XE-
22
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The recursive equation for the XE-NLMF algorithm is
defined as follows [7]:

wkþ1 ¼ wk þ
gxee3

kxk

dþ ð1� aÞkxkk
2 þ akekk

2
, (1)

where gxe represents the step size, the error signal is

ek ¼ dk � xT
kwk, (2)

the desired response is defined by

dk ¼ xT
kwopt þ Zk, (3)

wk ¼ ½w0;w1; . . . ;wN�1�
T is the filter coefficient vector of

the adaptive filter (with wopt its optimal value), Zk is the
additive noise, xk ¼ ½xk; xk�1; . . . ; xk�Nþ1�

T is the input
vector, ek ¼ ½ek; ek�1; . . . ; ek�Nþ1�

T is the error vector, N is
the length of the filter, a is the mixing power parameter,
and the notation kxkk

2 denotes the squared Euclidean
norm of a vector, i.e., kxkk

2 ¼ xT
kxk.

As shown in (1), the LMF is normalised by both the
signal power and error power, which are balanced
by a. Combining signal power and error power has the
advantage that the former normalises the input signal,
while the latter can dampen down the outlier estimation
errors, thus improving stability while still retaining fast
convergence.

This work is an extension of the XE-NLMF algorithm
[7]. Instead of a fixed value a, a variable ak is proposed.
The value of this mixed-power parameter will compro-
mise between fast convergence and lower steady-state
error. Therefore, incorporating a variable value for the
mixed-power parameter is prudent and desirable for
better adaptive performance. This algorithm finds advan-
tageous applications in environments with highly dy-
namic channels. The time variation of the mixing
parameter allows the algorithm to follow changes in the
channel, which is not the case for the same algorithm with
a fixed mixing parameter.

The paper is organised as follows. Following the
Introduction, Section 2 introduces the variable-mixing
XE-NLMF algorithm as well as its convergence analysis.
Section 3 treats the transient analysis of the variable-
mixing XE-NLMF algorithm, while in Section 4 a deriva-
tion of the steady-state excess mean-square error (EMSE)
is performed. Section 5 deals with a tracking analysis of
the variable-mixing algorithm. Here, it should be noted
that the energy conservation principle [8] is used to carry
out the different analyses of the proposed algorithm.
Section 6 presents and discusses several simulation
results on the performance of the variable XE-NLMF
algorithm in stationary and non-stationary environments,
which substantiates the theoretical predictions. Finally,
Conclusions are given in Section 7.

2. Variable XE-NLMF algorithm

2.1. Algorithm development

The mixing-power parameter, ak, is confined to the
interval [0,1] and will be recursively adapted to weight the
signal power, kxkk

2, and error power, kekk
2, for maximum
Please cite this article as: A. Zerguine, et al., Convergence a
NLMF)..., Signal Process. (2008), doi:10.1016/j.sigpro.2008.10.0
performance. Here, we propose a 1-sample correlation of
the error feedback quantity, mk, updated according to a
variable-step-size-parameter like in [9]

mkþ1 ¼ nmk þ pkjekek�1j, (4)

where the quantity ekek�1 determines the distance from
wk to the optimum weight, n is a constant, j � j denotes the
absolute value, and the quantity pk is updated according
to a weighted sum of the past three samples of ak in the
following way:

pk ¼ a½ak�2 þ ak�1 þ ak�, (5)

where a is a constant. With this averaging, the recursion
curve of mk can be more flexibly controlled. The estimation
of the autocorrelation between ek and ek�1 is then used to
guide the value of ak as follows:

ak ¼ erfðmkÞ, (6)

where erfðrÞ ¼ ð2=
ffiffiffiffi
p
p
Þ
R r

0 e�y2
dy is the error function, with

the purpose to confine ak to the interval [0,1]. Similarly,
the parameters n and p are restricted to the interval [0,1].
Moreover, to avoid zero in the feedback loop, the initial
value of pk is set at p0 ¼ 0:5. The steady-state mean
behaviour of the mixing parameter ak, that is, E½a1� is
derived in Appendix A.

This scheme provides an automatic adjustment of ak

according to the estimation of the autocorrelation between
ek and ek�1. While the estimation error is large, ak will
approach unity, thus providing fast adaptation. When the
error is small, ak is adjusted to a smaller value for a lower
steady-state error. Based on this motivation, the proposed
variable XE-NLMF algorithm is expressed as follows:

wkþ1 ¼ wk þ
gxee3

kxk

dþ ð1� akÞkxkk
2 þ akkekk

2
, (7)

where the only difference from (1) is that ak is now signal
dependent.

A convergence analysis of the proposed algorithm will
be studied using the weight-error vector defined as
follows:

vk ¼ wopt �wk. (8)

In this regard, the error ek can be set up in the following
way:

ek ¼ Zk þ xT
kvk. (9)

2.2. Mean behaviour of the weight vector

In the ensuing analysis, the following assumptions are
used in the convergence analysis of the variable XE-NLMF
algorithm. These are quite similar to what is usually
assumed in the literature [1,2,5,10] and which can also be
justified in several practical instances:
(A1)
nd tr
22
The noise Zk is independent of the input signal xk,
both of which are zero mean, with xk having variance
s2

x and Zk having zero odd moments.

(A2)
 The step size is small enough for the independence

assumption [2] to be valid. As a consequence, the
weight-error vector is independent of the input xk.
acking analysis of a variable normalised LMF (XE-

dx.doi.org/10.1016/j.sigpro.2008.10.022
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(A3)
Ple
NLM
The mixing parameter ak is independent of ek, kekk
2,

and kxkk
2.
The independence assumption [2] is very common in the
literature and is justified in several practical instances.
The assumption of small step size is not necessarily true in
practice but has been commonly used to simplify the
analysis [2]. Note that since ak and wk are functions of
fxn;Zn : npkg, they will, in general, be dependent. How-
ever, when parameters are chosen so that the steady-state
variance of ak and/or wk is small, then A3 can be
approximately satisfied.

The following observation, which is directly obtained
from the various assumptions given above, will also be
used in the ensuing derivations.

Observation 1: It is straightforward to show that

E½e2
k � ¼ zmin þ tr½RGk�, (10)

where zmin, Gk ¼ E½vkvT
k �, R ¼ E½xkxT

k �, and tr½ � are, respec-
tively, the minimum mean-square error (MSE), the second
moment matrix of the misalignment vector, the input
correlation matrix, and the matrix trace operator. The
EMSE, denoted by zk, is given by

zk ¼ E½e2
k � � zmin

¼ tr½RGk�. (11)

Taking the expectation on both sides of (7), under
A1–A3, the mean weight-error vector of the variable XE-
NLMF algorithm evolves as

E½vkþ1� ¼ E½vk� � gxeE
e3

k xk

dþ ð1� akÞkxkk
2 þ akkekk

2

" #
. (12)

Now, considering the second expectation in the above
equation, it can be shown that

E
e3

kxk

dþ ð1� akÞkxkk
2 þ akkekk

2

" #

¼ E
e3

kxk

dþ ð1� akÞkxkk
2 þ akkẽkk

2 þ ake2
k

" #
, (13)

where ẽk ¼ ½ek�1; ek�2; . . . ; ek�Nþ1�
T. Since, all the elements

of ẽk have around the same magnitude as ek, we have
e2

k5kẽkk
2 and therefore, the term ake2

k can be ignored.
This will be especially true when the filter is long enough.
Consequently, the independence assumption can be
invoked to obtain the following:

E
e3

kxk

dþ ð1� akÞkxkk
2 þ akkẽkk

2

" #

� E½e3
k xk�E

1

dþ ð1� akÞ trðRÞ þ akkẽkk
2

� �
. (14)

To solve the expectation E½e3
kxk� we use the technique of

[11], which does not employ any linearisation of e3
k . As a

result, E½e3
kxk� is found to be

E½e3
kxk� ¼ 3 ðs2

Z þ zkÞRE½vk�. (15)

The second expectation on the right side of (14) is
evaluated in Appendix B and is given by (93). Ultimately,
ase cite this article as: A. Zerguine, et al., Convergence a
F)..., Signal Process. (2008), doi:10.1016/j.sigpro.2008.10.0
(12) can be set up in the following form:

E½vkþ1� � I�
3gxeðs2

Z þ zkÞ

ckðlk � 2Þ
R

( )
E½vk�, (16)

where expressions for ck and lk are derived in Appendix B.
If Cpzk is the Cramer–Rao bound associated with

the problem of estimating the random quantity xT
kwopt by

using xT
kwk, then after taking into account the fact that the

eigenvalues of R are all real and positive, it follows that a
sufficient condition for convergence of the proposed
algorithm is that the step-size parameter gxe satisfies

0ogxeo
2ckðlk � 2Þ

3ðs2
Z þCÞlmax

, (17)

where lmax is the largest eigenvalue of R.
In general lmaxotrðRÞ [12] and with trðRÞ ¼ Ns2

x , one
simplifies further the above expression for the step-size
parameter. Therefore, a sufficient condition for convergence
in the mean of the variable XE-NLMF algorithm is given by

0ogxeo
2ck ðlk � 2Þ

3Ns2
x ðs2

Z þCÞ
. (18)

Two extreme scenarios can be considered here for the
value of the mixing parameter ak.
1.
nd
22
Scenario 1: When ak ¼ 0 (i.e., in the absence of any
mixing), the variable XE-NLMF algorithm reduces to
the conventional NLMF algorithm [6], and it can be
shown that

ckðlk � 2Þ � trðRÞ. (19)

Consequently, (18) becomes

0ogxeo
2

3ðs2
Z þCÞ

. (20)
2.
 Scenario 2: When ak ¼ 1, it can be shown that

ck ðlk � 2Þ ¼ d 1þ
XN�1

k¼1

ðzn�k þ s2
ZÞ

" #

� 2d
PN�1

k¼1 ðzn�k þ s2
ZÞ

2

1þ
PN�1

k¼1 ðzn�k þ s2
ZÞ

. (21)

Consequently, (18) becomes

0ogxeo
2d

3Ns2
x ðs2

Z þCÞ

� 1þ
XN�1

k¼1

ðzn�k þ s2
ZÞ � 2

PN�1
k¼1 ðzn�k þ s2

ZÞ
2

1þ
PN�1

k¼1 ðzn�k þ s2
ZÞ

" #
. (22)

This will result in a very small step-size ðgxeÞ, and with
d being very small will eventually make the conver-
gence very slow. This is expected, as the update rule for
ak suggests that its value decreases near steady-state,
and consequently the effective variable step size in (7)
also reduces.

Remarks. 1. It can be seen from (7) that the variable
XE-NLMF algorithm uses a normalised mixture of signal
tracking analysis of a variable normalised LMF (XE-

dx.doi.org/10.1016/j.sigpro.2008.10.022
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and error power. The proposed algorithm can be viewed
as a variable-step-size LMF algorithm with time varying
step size.

2. The error is usually large during the initial adaptation

and gradually decreases toward a minimum. Therefore,

the signal power, kxkk
2, will act as a threshold to avoid

taking large step sizes when the error converges to a

minimum. The combination of ð1� akÞkxkk
2 and akkekk

2

has the advantage of normalising the input signal power

and improving stability since kekk
2 will dampen down the

outlier distribution of e3
k in the recursive updating

equation.

3. The bound for the step-size ðgxeÞ of the proposed

algorithm that guarantees convergence of the mean

weight vector, given by (18), shows that the mean weight

vector stability depends on the Cramer–Rao bound.

Therefore, the convergence of the mean weight vector of

the proposed algorithm depends on its mean-square

stability. A similar fact was observed in [11] for the LMF

algorithm.

3. Transient analysis of the variable XE-NLMF
algorithm

Transient analysis of adaptive algorithms is important
in studying their convergence behaviour and to derive
steady-state expressions for different error performance
measures, e.g., the EMSE. In this work, a unified approach
to the transient analysis of adaptive filters with error
nonlinearities is used. This approach does not restrict the
regression data to be Gaussian and avoids the need for
explicit recursions of the covariance matrix of the weight-
error vector. In [8], a general framework for the steady-
state analysis of adaptive algorithms is developed, which
is based on the concept of energy conservation. It holds for
all adaptive algorithms whose recursion is of the form

wnþ1 ¼ wk þ gxexkf ðekÞ, (23)

where gxe is the step size and f ðekÞ denotes a general scalar
function of the output estimation error ek, which, in the
case of the variable XE-NLMF algorithm, is

f ðekÞ ¼
e3

k

dþ ð1� akÞkxkk
2 þ akkekk

2
. (24)

Also, this approach assumes that the adaptive filter is long
enough to justify the following assumptions:
(A4)
Ple
NLM
The residual or a priori error eak, to be defined later,
can be assumed to be Gaussian.
(A5)
 The norm of the input regressor ðkxkk
2Þ can be

assumed to be uncorrelated with f 2
ðekÞ, which is the

square of the error nonlinearity, f ðekÞ.
3.1. Error measures

We are interested in studying the time-evolution and
steady-state values of E½je2

k j� and E½kvkk
2�, where vk is the

weight-error vector defined in (8). The steady-state values
ase cite this article as: A. Zerguine, et al., Convergence a
F)..., Signal Process. (2008), doi:10.1016/j.sigpro.2008.10.0
of E½je2
k j� and E½kvkk

2� represent the MSE and the mean-
square deviation performance of the filter, respectively,
whereas their time evolutions relate to the learning or
transient behaviour of the filter.

Using a symmetric positive definite weighting matrix
A, to be specified later, weighted a priori and a posteriori

estimation errors are, respectively, defined as

eA
ak ¼ xT

kAvk and eA
pk ¼ xT

kAvkþ1. (25)

For the special case when A ¼ I, the weighted a priori and
a posteriori estimation errors defined above are reduced to
standard a priori and a posteriori estimation errors,
respectively, that is

eak ¼ eI
ak ¼ xT

kvk and epk ¼ eI
pk ¼ xT

kvkþ1. (26)

It can be shown that the estimation error, ek, and the a

priori error, eak, are related via ek ¼ eak þ Zk. Also, (23) and
(25) result in the following relation:

eA
pk ¼ eA

ak � kxkk
2
Agxef ðekÞ, (27)

where the notation kxkk
2
A denotes the weighted squared

Euclidean norm of xk, i.e., kxkk
2
A ¼ xT

kAxk.
The performance measure in the analysis is the EMSE

which is defined in (11). Since eak ¼ xT
kvk, the EMSE can

also be written as follows:

zk ¼ E½jeakj
2�. (28)

3.2. Fundamental weighted-energy relation

In this section, the fundamental weighted-energy
conservation relation is presented to develop the frame-
work for the transient analysis of the variable XE-NLMF
algorithm.

Using (23), the following recursion can be obtained:

vkþ1 ¼ vk � gxexkf ðekÞ. (29)

Thus, by substituting (27) in (29),

vkþ1 ¼ vk �
xk

kxkk
2
A

½eA
ak � eA

pk�. (30)

Now, the fundamental weighted-energy conservation
relation can be shown to be

kvkþ1k
2
A þ

1

kxkk
2
A

jeA
akj

2 ¼ kvkk
2
A þ

1

kxkk
2
A

jeA
pkj

2. (31)

This relation shows how the weighted energies of the
error quantities evolve in time. It can be shown that
different performance measures can be obtained by the
proper choice of the weight matrix A, e.g., the EMSE can be
recovered when A ¼ I.

3.3. Time evolution of the weighted variance E½kvkk
2
A�

In this section, the time evolution of the weighted
variance E½kvkk

2
A� is derived for the variable XE-NLMF

algorithm using the fundamental weighted–energy con-
servation relation (31). Substituting the expression for a

posteriori error from (27) in (31) and taking expectation on
nd tracking analysis of a variable normalised LMF (XE-
22
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both sides obtain the following relation:

E½kvkþ1k
2
A� ¼ E½kvkk

2
A� � 2gxeE½eA

akf ðekÞ� þ g2
xeE½kxkk

2
Af 2
ðekÞ�.

(32)

Now, the two above expectations E½eA
akf ðekÞ� and

E½kxkk
2
Af 2
ðekÞ� are evaluated. First, the following assump-

tion, which is reasonable for longer filters using central
limit arguments, is used:
(A6)
Ple
NLM
For any constant matrix A and for all k, eak and eA
ak are

jointly Gaussian.
This assumption was used in [13] and a similar one was
used in [14] to deal directly with the error nonlinearity,
avoiding linearisation. Hence, we can simplify the ex-
pectation E½eA

akek� using Price’s theorem [15, 16] and
assumptions A4 and A6 as follows:

E½eA
akf ðekÞ� ¼ E½eA

akf ðeak þ ZkÞ�

¼ E½eA
akeak�

E½eakf ðekÞ�

E½e2
ak�

. (33)

Since eA
ak ¼ xT

kAvk and eak ¼ xT
kIvk, we can simplify the

expectation E½eA
akeak� as follows:

E½eA
akeak� ¼ E½xT

kAvkxT
kIvk�

¼ E½kvkk
2
AxkxT

k
I�

¼ E½kvkk
2
AR�. (34)

For the case of the variable XE-NLMF algorithm, E½eakf ðekÞ�,
can be expressed as

E½eakf ðekÞ� ¼ E
eake3

k

dþ ð1� akÞkxkk
2 þ akkẽkk

2 þ ake2
k

" #
. (35)

As was done in the case of developing (14), similar
arguments are used here to reach the following form
of (35):

E½eakf ðekÞ� ’ E½eake3
k �E

1

dþ ð1� akÞ trðRÞ þ akkẽkk
2

� �
. (36)

According to the long-filter assumption A4, eak is Gaus-
sian. Therefore, the following relation holds:

E½eake3
k � ¼ 3E½e2

ak�ðE½e
2
ak� þ s

2
ZÞ. (37)

Now, the term E½eakf ðekÞ�=E½e2
ak� simplifies to the following:

E½eakf ðekÞ�

E½e2
ak�

’ 3ðzk þ s2
ZÞE

1

dþ ð1� akÞ trðRÞ þ akkẽkk
2

� �
.

(38)

The last expectation in the above equation is evaluated in
Appendix B and is given by (93). Finally, (38) can be
shown to be

E½eakf ðek�

E½e2
ak�
’

3ðzk þ s2
ZÞ

ck ðlk � 2Þ

9Hk, (39)

where ck and lk are defined in Appendix B.
Ultimately, (33) can be expressed as

E½eA
akf ðekÞ� ¼ E½kvkk

2
AR�Hk. (40)
ase cite this article as: A. Zerguine, et al., Convergence a
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Second, to solve the expectation E½kxkk
2
Af 2
ðekÞ�, we will

resort to assumption A5 which will enable us to split the
expectation E½kxkk

2
Af 2
ðekÞ� as follows:

E½kxkk
2
Af 2
ðekÞ� ¼ E½kxkk

2
A� � E½f

2
ðekÞ�. (41)

To evaluate E½f 2
ðekÞ�, we have used an approximation

similar to the one used to calculate the first expectation,
that is, E½eA

akf ðekÞ�. Consequently, using the same approach
to the one we used to evaluate (14) and (36), it can be
shown that

E½f 2
ðekÞ� ’ E½e6

k �E
1

ðdþ ð1� akÞ trðRÞ þ akkẽkk
2Þ

2

" #
. (42)

The last expectation in the above equation is solved in
Appendix B and is given by (94). Finally, (42) can be
shown to be

E½f 2
ðekÞ� ’

E½e6
k �

c2
k ðlk � 2Þðlk � 4Þ

, (43)

where

E½e6
k � ¼

15 ðzk þ s2
ZÞ

3 if noise is Gaussian;

15z3
k þ 45s2

Zz
2
k þ 15E½Z4

k �zk þ E½Z6
k � otherwise:

8<
:

(44)

Eq. (32) shows the time evolution or transient behaviour
of the weighted variance E½kvkk

2
A� for any constant weight

matrix A. As mentioned earlier, different performance
measures can be obtained by the proper choice of the
weight matrix A.

3.4. Constructing the learning curves for the EMSE

The learning curves for the EMSE can be obtained using
the fact that zk ¼ E½e2

ak� ¼ E½kvkk
2
R�. If we choose A ¼ I;R;

. . . ;RN�1, a set of relations can be obtained from (32) and
is given

E½kvkþ1k
2
I � ¼ E½kvkk

2
I � �GkE½kvkk

2
R�

þg2
xeE½kxkk

2
I �E½f

2
ðekÞ�;

E½kvkþ1k
2
R� ¼ E½kvkk

2
R� �GkE½kvkk

2
R2 �

þg2
xeE½kxkk

2
R�E½f

2
ðekÞ�;

..

.

E½kvkþ1k
2
RN�1 � ¼ E½kvkk

2
RN�1 � �GkE½kvkk

2
RN �

þg2
xeE½kxkk

2
RN�1 �E½f

2
ðekÞ�;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(45)

where

Gk ¼ 2gxeHk. (46)

Now, using the Cayley–Hamilton theorem, we can write

RN
¼ �p0I� p1R � � � � � pN�1RN�1, (47)

where

pðxÞ9detðxI� RÞ

¼ p0 þ p1xþ � � � þ pN�1xN�1 þ xN (48)
nd tracking analysis of a variable normalised LMF (XE-
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is the characteristic polynomial of R. Consequently, the
following relation is obtained:

E½kvkþ1k
2
RN�1 � ¼ E½kvkk

2
RN�1 �

þ ðp0E½kvkk
2
I � þ p1E½kvkk

2
R�

þ � � � þ pN�1E½kvkk
2
RN�1 �ÞGk

þ g2
xeE½kxkk

2
RN�1 �E½f

2
ðekÞ�. (49)

Ultimately, using (45) and (49), the transient behaviour
of the variable XE-NLMF algorithm can be shown to be
governed by the following:

Wkþ1 ¼AkWk þ g2
xeE½f 2

ðekÞ�Y, (50)

where

Wk ¼ ½E½kvkk
2�E½kvkk

2
R� � � �E½kvkk

2
RN�1 ��

T, (51)

Y ¼ ½E½kxkk
2�E½kxkk

2
R� � � �E½kxkk

2
RN�1 ��

T, (52)

and

Ak ¼

1 �Gk 0 � � � 0 0

0 1 �Gk � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 1 �Gk

p0Gk p1Gk p2Gk � � � pN�2Gk 1þ pN�1Gk

2
66666664

3
77777775

.

(53)

Finally, using (50), we can obtain the time evolution
(learning curves) of E½kvkk

2� and E½kvkk
2
R� ¼ E½e2

ak�, that is,
the mean-square deviation and the EMSE, respectively.
3.5. Mean-square stability

In this section, a Lyapunov approach is adopted
for studying the mean-square stability of the variable
XE-NLMF algorithm. Consequently, we provide a nontri-
vial upper bound on gxe for which E½kvkk

2� remains
uniformly bounded for all k.

Starting from (32) with A ¼ I and using A4, it can be
shown that the variable XE-NLMF algorithm will be mean-
square stable provided that

�2gxeE½eA
akf ðekÞ� þ g2

xeE½kxkk
2
Af 2
ðekÞ�p0. (54)

The above inequality, upon substituting the values of the
two expectations (E½eA

akf ðekÞ� and E½kxkk
2
Af 2
ðekÞ�), will lead

us to get the following bound on gxe:

gxep

2CHkc2
k ðlk � 2Þðlk � 4Þ

15ðCþ s2
ZÞ

3 trðRÞ
if noise is Gaussian;

2CHkc2
k ðlk � 2Þðlk � 4Þ

15ðC3
þ 45s2

ZC
2
þ 15E½Z4

k �Cþ E½Z6
k �Þ trðRÞ

otherwise;

8>>>>><
>>>>>:

(55)

where CpE½e2
ak� is the Cramer–Rao bound associated with

the problem of estimating the random quantity xT
kwopt by

using xT
kwk.
Please cite this article as: A. Zerguine, et al., Convergence a
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4. Steady-state analysis of the variable XE-NLMF
algorithm

The purpose of the steady-state analysis of an adaptive
filter is to study the behaviour of steady-state EMSE. Now,
we analyse (32) for the limiting case when k!1.
Assuming that the weight-error vector reaches a steady-
state MSE value, i.e.,

lim
k!1

E½kvkþ1k
2
A� ¼ lim

k!1
E½kvkk

2
A�. (56)

Consequently, for a unity weight matrix ðA ¼ IÞ, (32)
reduces to

2 lim
k!1

E½e2
ak� lim

k!1
Hk ¼ gxe lim

k!1
E½kxkk

2� lim
k!1

E½f 2
ðekÞ�. (57)

Now, using the definition of the EMSE given by (28), its
steady-state value denoted by z1 is found to be

2z1 lim
k!1

Hk ¼ gxe trðRÞ lim
k!1

E½f 2
ðekÞ�. (58)

The terms limk!1Hk and limk!1E½f 2
ðekÞ� can be obtained

from (39) and (43), respectively. Since the value of ak

is very small near steady-state, it can be shown that
c1ðl1 � 4Þ � trðRÞ. Ultimately, for Gaussian noise, (58)
will look like

Az3
1 þ Bz2

1 þ Cz1 þ D ¼ 0, (59)

where

A ¼ �15gxe trðRÞ,

B ¼ 6trðRÞ � 45gxe trðRÞs2
Z,

C ¼ 6trðRÞs2
Z � 45gxe trðRÞs4

Z,

D ¼ �15gxe trðRÞs6
Z. (60)

Since the steady-state value of z1 is close to zero,
the higher powers of z1 can be ignored. Hence, the
asymptotic expression for the steady-state EMSE of the
variable XE-NLMF algorithm can be shown to be

z1 �
5gxes4

Z

2� 15gxes2
Z

. (61)

5. Tracking analysis of the variable XE-NLMF algorithm

Cyclic and random system nonstationarities are a
common impairment in communication systems and
especially in applications that involve channel estimation,
channel equalisation, and inter-symbol-interference can-
cellation. Random nonstationarity is present due to
variations in channel characteristics, which is true in
most cases, particularly in the mobile communication
environment [17]. Cyclic system nonstationarities arise in
communication systems due to mismatches between the
transmitter and receiver carrier frequencies. The ability of
adaptive filtering algorithms to track such system varia-
tions is not yet fully understood. In this regard, Rupp [18]
presents a first-order analysis of the performance of the
LMS algorithm in the presence of carrier frequency offset.
In [19,20], a general framework for the tracking analysis
of adaptive algorithms was developed, which handles
both cyclic as well as random system nonstationarities
nd tracking analysis of a variable normalised LMF (XE-
22

dx.doi.org/10.1016/j.sigpro.2008.10.022


ARTICLE IN PRESS

A. Zerguine et al. / Signal Processing ] (]]]]) ]]]–]]] 7
simultaneously. This framework, based on an energy
conservation principle [8], holds for all adaptive algo-
rithms whose recursions are of the form given by (23).
Before presenting the tracking analysis, we first develop a
complex version of the variable XE-NLMF algorithm in the
next section as a framework.

5.1. Complex version

In this case, the update rule for the quantity mk given
by (4) is modified as follows:

mkþ1 ¼ nmk þ pkjeke�k�1j, (62)

where ð Þ� represents the complex conjugate operation.
The update rule for pk and ak will remain the same, as
given by (5) and (6), respectively. The weight update
equation for the complex variable XE-NLMF algorithm is
now modified to the following:

wkþ1 ¼ wk þ
gxeje

2
k jekx�k

dþ ð1� akÞkxkk
2 þ akkekk

2
. (63)

5.2. System model and performance measure

In this section, a general system model is presented
that includes both random and cyclic nonstationarities.
To start, consider the noisy measurement dk that arises in
a model of the form

dk ¼ xT
kwo

kejOk þ Zk, (64)

where Zk is the measurement noise and wo
k is the unknown

system to be tracked. The multiplicative term ejOn accounts
for a possible frequency offset between the transmitter and
the receiver carriers in a digital communication scenario.
Furthermore, it is assumed that the unknown system vector
wo

k is randomly changing according to

wo
k ¼ wo þ qk, (65)

where wo is a fixed vector, and qk is assumed to be a zero-
mean stationary random vector process with positive
definite autocorrelation matrix Q k ¼ E½qkqT

k �. Moreover, it
is also assumed that the sequence fqkg is mutually
independent of the sequences fxkg and fZkg. Thus, from
the generalised system model given by (64) and (65), it
can be seen that the effects of both cyclic and random
system nonstationarities are included in this system
model.

In the steady-state analysis of adaptive algorithms, an
important measure of performance is their steady-state
EMSE defined in (11). In the case of tracking, the weight-
error vector ṽk is defined this time as

ṽk ¼ wo
kejOk �wk. (66)

5.3. Fundamental energy conservation relation

Using (23), (65), and (66) the following recursion is
obtained:

ṽkþ1 ¼ ṽk � gxex�kf ðekÞ þ ckejOk, (67)
Please cite this article as: A. Zerguine, et al., Convergence a
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where ck is defined as

ck ¼ woðejO � 1Þ þ qkþ1ejO � qk. (68)

Now, let us define the following a priori estimation
error, eak ¼ xT

k ṽk and a posteriori estimation error, epk ¼

xT
kðṽkþ1 � ckejOkÞ. Then, it is very easy to show that the

estimation error and the a priori error are related via
ek ¼ eak þ Zk. Also, the a posteriori error is defined in terms
of the a priori error as

epk ¼ eak �
gxe

m̂k

f ðekÞ, (69)

where m̂k ¼ 1=kxkk
2. Substituting (69) into (67) results in

the following update relation:

ṽkþ1 ¼ ṽk � m̂kx�k½eak � epk� þ ckejOk. (70)

By evaluating the energies of both sides of the above
equation (taking into account that m̂kkxkk

2 ¼ 1), the
following relation is obtained:

kṽkþ1 � ckejOkk2 þ m̂kjeakj
2 ¼ kṽkk

2 þ m̂kjepkj
2. (71)

It can be seen that if O ¼ 0 (i.e., no frequency offset), the
above equation reduces to the basic fundamental energy
conservation relation.
5.4. Tracking analysis

The energy relation (71) will be used to evaluate the
EMSE at steady state. But before starting the analysis, first
the following assumption is stated:
(A7)
nd tr
22
In steady state, the weight-error vector ṽk takes the
generic form zkejOk, with the stationary random
process zk independent of the frequency offset O.
Using (69), assumption A7, and taking expectation
of both sides of (71) with the fact that at steady state
E½ṽkþ1� ¼ E½ṽk�, the following relation can be obtained:

E½m̂kkeakk
2� ¼ 2trfQ kg þ kw

ok2j1� ejOj2

� 2RefE½q�kðzk � gxex�kf ðekÞe
�jOkÞ�g

� 2Refð1� ejOÞ�wo� � E½zk � gxex�kf ðekÞe
�jOk�g

þ E m̂kjeak �
gxe

m̂k

f ðekÞj
2

� �
, (72)

which can be used to solve for the steady-state EMSE.
To find the value of z ¼ E½zk�, (67) is used, where it is

multiplied by the term e�jOn and then expectation is taken
on both sides to get

ð1� ejOÞz ¼ gxeE x�kf ðekÞe
�jOk

h i
þwo ð1� ejOÞ. (73)

For the variable XE-NLMF algorithm, the function f ðekÞ can
be approximated by

f ðekÞ �
3eakZ2

k þ Z
3
k

dþ ð1� akÞkxkk
2 þ akkekk

2
(74)
acking analysis of a variable normalised LMF (XE-
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which yields the value of z at steady state:

z ¼ I�
3gxes2

ZR

ð1� ejOÞckðlk � 2Þ

" #�1

wo, (75)

where lk and ck are defined by (90) and (95), respectively.
It can be observed that c1ðl1 � 2Þ � N. Ultimately, the

steady-state EMSE, ztracking, for the variable XE-NLMF
algorithm is obtained from (72)

ztracking ¼
s2
Z

s2
Z � 3gxef

4
Z

trfQ kRg þ
gxef

6
Z

12s2
Z
þ

GN

12gxes2
Z

" #
, (76)

where G, X1, and X2 are defined, respectively, as

G ¼ j1� ejOj2Reftr½kwok2ðI� 2X1X2Þ�g,

X1 ¼ I�
3gxes2

Z

N
R,

and

X2 ¼ ð1� ejOÞI�
3gxes2

Z

N
R

" #�1

.

For a white Gaussian input signal, an approximate expres-
sion for the steady-state EMSE of the variable XE-NLMF
algorithm is found to be

ztracking ¼
s2
Z

s2
Z � 3gxef

4
Z

s2
x trfQ kg þ

gxef
6
Z

12s2
Z

(

þ
NO2
kwok2

12gxes2
Z

1þ
2ðN � 3gxes2

Zs2
x Þ

3gxes2
Zs2

x

" #)
. (77)

6. Simulation results

This section presents the results of some simulation
experiments that were carried out to investigate the
performance and behavior of the proposed variable XE-
NLMF algorithm. The results demonstrate several good
properties of the variable XE-NLMF algorithm, and its
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Fig. 1. Effect of a on the convergence performance of the fixed XE-NLMF

algorithm.
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performance superiority over the XE-NLMF with fixed
mixing parameter and NLMS algorithms. The results
also confirm the theoretical findings. Finally, the system
performance will be evaluated both in a stationary and a
non-stationary environment, as discussed below.

Since the performance of the fixed XE-NLMF algorithm
is governed by the choice of the right a, the following
study considers the effect of a on the performance of the
fixed XE-NLMF algorithm. The convergence characteristics
of different values of a ð0pap0:9Þ are studied in this part
of the simulations and these are shown in Fig. 1. Typically
for a ¼ 0:1, the convergence curves are close to the
NLMF algorithm, which slows down after the initial fast
convergence. Lower weight errors are observed for a ¼ 0:1
and 0.5, but their convergence speeds are slower than that
observed when a ¼ 0:9. The performance for a ¼ 0:5 is
in between that of a ¼ 0:1 and 0.9. Therefore, the value
of a ¼ 0:5 is considered for the rest of this study.
The experiment for this scenario is carried out in the
same system used in the next section under a signal-to-
noise ratio (SNR) of 30 dB, and the noise is additive white
Gaussian.
6.1. System performance in a stationary environment

In the first experiment, a system identification setup
is used to evaluate the algorithm’s performance.
The unknown system is modelled by a time-invariant
finite impulse response filter with wopt ¼ ½0:035 � 0:068
0:12 � 0:258 0:9 � 0:25 0:10 � 0:07 0:067 � 0:067�T.
The coloured input signal, xk, is obtained by passing a
white Gaussian noise, uk, through a channel defined by
xk ¼ 0:5xk�1 þ 0:6uk. The SNR is set at 20 dB. Two types of
additive noises, white Gaussian noise and binary additive
noise (sub-Gaussian), are tested. The performance mea-
sure considered here is the normalised weight-error norm,
10 log10ðkwopt �wkk

2=kwoptk
2Þ. The results are averaged

over 300 independent runs. The step size for the proposed
variable XE-NLMF algorithm is gxe ¼ 0:1, whereas that
of the NLMS is set to 0.2. The parameters n and a are set
to 0.98 and 0.9, respectively. The unknown system length
is N ¼ 6.

Fig. 2 depicts the convergence behaviour of the
proposed variable XE-NLMF, the XE-NLMF (with a ¼ 0:5),
and the NLMS with the same convergence rate in an
additive white Gaussian noise (AWGN) environment. As
can be seen from this figure, the variable XE-NLMF
algorithm adapts faster than the XE-NLMF and NLMS
algorithms, and at the same time, produces a lower
steady-state weight-error norm of more than 15 dB. This
demonstrates the advantages of incorporating a variable
mixed-power parameter in the XE-NLMF algorithm.

In Fig. 3, the variable XE-NLMF algorithm converges
faster than both the XE-NLMF (with a ¼ 0:5) and the
NLMS algorithms with a lower-steady state error than the
NLMS algorithm in a binary (sub-Gaussian) additive noise
environment. Here, the difference of 23 dB in weight-error
norm is more apparent than in the case of the AWGN
environment. Thus the LMF-based algorithm performs
better in sub-Gaussian noise.
nd tracking analysis of a variable normalised LMF (XE-
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In the second experiment, a channel equaliser, similar
to that of [7], is used to study the performance of the
proposed variable XE-LMF algorithm in terms of bit-error
rate (BER). The channel is hðzÞ ¼ 1þ 0:4z�1 and the co-
channel is cðzÞ ¼ 1þ 0:2z�1. The equaliser length is N ¼ 8.
The BER in an AWGN and co-channel interference scenario
are depicted in Figs. 4 and 5, respectively. As expected, in
AWGN, the BER performance of the three algorithms is
almost the same. However, the most interesting result is
that of Fig. 5 where the variable XE-NLMF algorithm
outperforms the NLMS algorithm. A 2 dB improvement
over the NLMS algorithm is achieved at a BER of 10�6.
Again the difference in performance between the two
algorithms is more apparent in the case of a sub-Gaussian
noise environment. Also, as can be seen from this figure,
the performance of the XE-NLMF and the NLMF algo-
rithms are almost the same, but both are outperformed by
the variable XE-NLMF algorithm.

Finally, Fig. 6 depicts the time evolution of the MSE,
namely, E½kvkk

2
R� þ zmin, obtained for both the theoretical
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analysis, i.e., the second entry of (51), and the simulations.
Good agreement between the experimental and analytical
results is observed. The good matching between these
results not only confirms the correctness of the deriva-
tions, but also justifies the usefulness of the various
simplifying assumptions and approximations used.

6.2. System performance in a non-stationary environment

The results presented in this part of the simulation are
presented to validate the theoretical findings embodied in
(77) for different values of O. While the system character-
istics are time-varying, the unknown system is given by
½1:0119� j0:7589; �0:3796þ j0:5059�T. Experiments are
carried out at 10 dB SNR and two values are considered for
trfQ kg: a very small value of trfQ kg ¼ 10�7, and a very
large one of trfQ kg ¼ 10�2.

Fig. 7 depicts the comparison between both the
theoretical and simulation results for three different
values of O, i.e., 0.01, 0.02, and 0.03. As can be seen from
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this figure, close agreement between theory and simula-
tion is obtained. This figure shows also that the steady-
state EMSE has a minimum value for a certain value of the
step-size gxe, e.g., for O ¼ 0:01, gxe is around 0.43. More-
over, unlike in the stationary case, the steady-state EMSE
is not a monotonically increasing function of the step-size
gxe. Furthermore, it is observed from this figure that
degradation in performance is obtained by increasing the
frequency offset O.

Similar behaviour is observed in Fig. 8 for the case of
O ¼ 0:1, O ¼ 0:2, and O ¼ 0:3. As expected in this case too,
the steady-state EMSE of the variable XE-NLMF algorithm
gets larger for larger values of O. More importantly, both
theory and simulation are in close agreement in this part
of the simulations.

Figs. 7 and 8 are obtained for the case when
trfQ kg ¼ 10�7, which represents a small value. Increasing
this value to 10�2, the results depicted in Fig. 9 for three
different values of O, i.e., 0.1, 0.2, and 0.3, still show that
the previously stated observations are similar to those
obtained for a larger value of trfQ kg.
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Fig. 11. Tracking performance of the proposed variable XE-NLMF

algorithm, the fixed XE-NLMF algorithm ða ¼ 0:5Þ, and the NLMS

algorithm in a binary additive noise environment for O ¼ 0:001 (a)

trfQ kg ¼ 10�2 and (b) trfQ kg ¼ 10�7.
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Figs. 10(a) and (b) depict the tracking behaviour of
the proposed variable XE-NLMF algorithm, the fixed XE-
NLMF algorithm ða ¼ 0:5Þ, and the NLMS algorithm in
an AWGN environment for trfQ kg ¼ 10�7, O ¼ 0:01 and
0.001, respectively. Finally, Figs. 11(a) and (b) depict the
tracking behaviour of the proposed variable XE-NLMF
algorithm, the fixed XE-NLMF algorithm ða ¼ 0:5Þ, and the
NLMS algorithm in binary additive noise environment
for O ¼ 0:001, trfQ kg ¼ 10�2 and 10�7, respectively. Two
important observations can be seen from these figures.
First, the consistency of performance of the proposed
algorithm in both scenarios over the other algorithms.
Second, the MSE increases with O.
7. Conclusions

This work has proposed a variable XE-NLMF algorithm
with a variable mixed-power parameter ðakÞ. The variable
mixed-power parameter follows the scheme of a variable-
step-size LMS and is effective in controlling the mixed-
power parameter. This variable normalisation strategy
provides an optimised mixed normalisation of signal and
error powers for the LMF algorithm. Hence, replacing the
fixed user-selected mixed-power parameter by an auto-
matic adaptation provides an extra performance gain for
the XE-NLMF algorithm.

The results of our study can be summarised briefly as
follows:
1.
nd
22
A thorough theoretical performance analysis of the
algorithm was carried out and showed good agreement
with simulation results.
2.
 The analytical results of the steady-state EMSE were
derived for the variable XE-NLMF algorithm in the
presence of both random and cyclic nonstationarities.
Close agreement between theory and simulation in
both cases for two different values of trfQ kg and
different values of O was obtained. The results, show
that unlike in the stationary case, the steady-state
EMSE is not a monotonically increasing function of the
step-size gxe, while the ability of the variable XE-NLMF
algorithm to track variations in the environment
degrades with frequency offset O.
3.
 The variable XE-NLMF requires three extra multiplica-
tions and three extra additions in comparison with the
fixed XE-NLMF algorithm with fixed mixing parameter,
and ðN þ 5Þ extra multiplications and ðN þ 3Þ extra
additions in comparison with the NLMS algorithm.
4.
 Finally, these properties make the proposed vari-
able XE-NLMF algorithm more suitable for modern
day applications, e.g., wireless communications where
a non-Gaussian environment is more likely to be
present, rather than the fixed XE-NLMF algorithm with
fixed mixing parameter or the NLMS algorithm.
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Appendix A. Derivation of E½a1�

In this appendix, the steady-state mean value of the
power mixing parameter ðakÞ is derived. The update rule
for the quantity pk, given by (5), can be set up to the
following:

pk ¼ a½erfðmk�2Þ þ erfðmk�1Þ þ erfðmkÞ�, (78)

where we have used the relation given by (6). Conse-
quently, the recursion for mk, given by (4), can be modified
as follows:

mkþ1 ¼ nmk þ ajekek�1j½erfðmk�2Þ þ erfðmk�1Þ þ erfðmkÞ�.

(79)

We assume that mk is independent of ek for all values of k.
This is not true in general, but it is applicable in the case
when n is close to 1. Taking the expectation on both sides
of (79) and using this independent assumption then gives

E½mkþ1� ¼ nE½mk� þ aE½jekek�1j�

�½E½erfðmk�2Þ� þ E½erfðmk�1Þ� þ E½erfðmkÞ��. (80)

Near steady-state, mk has a small value, which makes it
possible to use the following approximation:

E½erfðm1Þ� � erfðE½m1�Þ, (81)

Consequently, at steady-state, the recursion (80) takes the
following form:

E½m1� ¼ nE½m1� þ aE½je2
1j�½erfðE½m1�Þ

þ erfðE½m1�Þ þ erfðE½m1�Þg�. (82)

Ultimately, it can be shown that

E½m1� ¼
3a

ð1� nÞ
E½je1j

2�erfðE½m1�Þ. (83)

Knowing that E½je1j
2� ¼ z1 þ s2

Z and using expression
(61), we can rewrite (83) as follows:

E½m1� ¼
3a

ð1� nÞ
5gxe trðRÞs4

Z

2c1 ðl1 � 4Þ � 10gxe trðRÞs2
Z
þ s2

Z

" #
erfðE½m1�Þ.

(84)

This is a fixed-point equation that can be solved for E½m1�.
Finally, E½a1� can be obtained using E½a1� ¼ erfðE½m1�Þ.

Appendix B. Derivation of (14) and (42)

In this appendix, the expectation terms

E
1

dþ ð1� akÞ trðRÞ þ akkẽkk
2

� �

and

E
1

ðdþ ð1� akÞ trðRÞ þ akkẽkk
2Þ

2

" #

are evaluated. Let us define a new random variable Y , such
that

Y ¼ dþ ð1� akÞ trðRÞ þ akkẽkk
2, (85)

where we are using the instantaneous value of the
mixing parameter ak. Next, Y can be set up to the
Please cite this article as: A. Zerguine, et al., Convergence a
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following:

Y ¼ ½dþ ð1� akÞ trðRÞ� � 1þ
ak

dþ ð1� akÞ trðRÞ

XN�1

k¼1

e2
n�k

" #

¼ ½dþ ð1� akÞ trðRÞ�

� 1þ
ak

dþ ð1� akÞ trðRÞ

XN�1

k¼1

s2
en�k
ðe0n�kÞ

2

" #
, (86)

where s2
en�k

is the variance of the error term en�k and

e0n�k ¼
en�k

sen�k

(87)

is the normalised error term with unit variance.
Now, by the long-filter assumption A4, eak is a Gaussian

random variable with zero mean. Consequently, the
error term ek also becomes Gaussian in the presence
of Gaussian noise. Ultimately, the term

PN�1
k¼1 s2

en�k
ðe0n�kÞ

2

can be considered as a weighted sum of central chi-square
random variables with one degree of freedom. There is no
closed form expression for this sum for general weights. In
this case, it is common practice in statistics to approx-
imate a weighted sum of chi-square variables by a single
one with different degrees of freedom and an appropriate
scaling factor. Therefore, using the procedure outlined in
[21], we can write

1þ
ak

dþ ð1� akÞ trðRÞ

XN�1

k¼1

s2
en�k
ðe0n�kÞ

2
� bX2

ðlÞ, (88)

where b is a scaling factor and X2
ðlÞ is a central chi-square

random variable with l degrees of freedom. The para-
meters b and l should be chosen such that both sides
of the above equation have the same first two moments.
Comparing the above equation with [21, Eq. (10)], the
parameters b and l can be found directly to be

bk ¼
bk

ak
(89)

and

lk ¼
a2

k

bk
, (90)

where

ak ¼ 1þ
ak

dþ ð1� akÞ trðRÞ

XN�1

k¼1

ðzn�k þ s2
ZÞ (91)

and

bk ¼
a2

k

½dþ ð1� akÞ trðRÞ�2
XN�1

k¼1

ðzn�k þ s2
ZÞ

2. (92)

Finally, using the fact that E½gðyÞ� ¼
R1
�1

gðyÞf Y ðyÞdy where
gðyÞ is any function of the random variable Y , it can be
shown that

E
1

dþ ð1� akÞ trðRÞ þ akkẽkk
2

� �
¼

1

ckðlk � 2Þ
(93)

and

E
1

ðdþ ð1� akÞ trðRÞ þ akkẽkk
2Þ

2

" #
¼

1

c2
k ðlk � 2Þðlk � 4Þ

,

(94)
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where ck is given by

ck ¼ ½dþ ð1� akÞ trðRÞ�bk. (95)
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